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It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be
expressed, without approximation, in the same form as the linearized approximation of the
semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation
function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the
Wigner functions corresponding to the two operators. The difference is that the trajectories involved
in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the
exact theory they evolve according to generalized equations of motion that are derived here.
Approximations to the exact equations of motion are then introduced to achieve practical methods
that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the
paper—the full Wigner dynamics (full WD) and the second order WD based on “Wigner
trajectories” [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full
Donoso-Martens dynamics (full DMD) and the second order DMD based on “Donoso-Martens
trajectories” [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]—all of which
can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four
versions of this new approach are made for two anharmonic model problems, and for each the
momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators)
and the force autocorrelation function (nonlinear operators) have been calculated. These four new
approximate treatments are indeed seen to be significant improvements to the original LSC-IVR

approximation. © 2007 American Institute of Physics. [DOI: 10.1063/1.2743023]

I. INTRODUCTION

12Most quantities of interest in the dynamics of complex
systems can be expressed in terms of time correlation
functions." For example, dipole moment correlation func-
tions are related to absorption spectra, flux correlation func-
tions yield reaction rates, velocity correlation functions can
be used to calculate diffusion constants, and vibrational en-
ergy relaxation rate constants can be expressed in terms of
force correlation functions. The standard real time correla-
tion function is of the form

A A a A D 1 Ba A D
CAB(I) — Tr(f)OAeth/ﬁBe—zHr/h) — zTr(g—ﬁHAeth/%Be—sz/ﬁ)
(1.1)

or sometimes it is convenient to use the symmetrized
version®

1 L
CAB(t) - E’1"1.(e—ﬁl‘[/214e—ﬁH/ZelHl/ﬁBe—lHI/ﬁ) (12)

.3
or the Kubo-transformed version
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CKubO(t) — l A\ l Tr( e—(,B—}\)H A e M eth/fL 1;, e‘iH’/h).

AB 7 B
0

(1.3)

Here H is the (time-independent) Hamiltonian for the sys-
tem, which we assume to be of standard Cartesian form

.
2m

H="—+V(®), (1.4)

where we have used one-dimensional notation for simplicity,
m is the mass, and p and X are the momentum and coordinate
operators, respectively. Also, in Egs. (1.1) and (1.2), Z
=Tre P (B=1/kgT) is the partition function, the density op-
erator po=e PH/Z for the system at equilibrium, and A and B
are operators relevant to the specific property of interest. For
later use we also define the combination of operators A and
the Boltzmann operator AP as AP=(1/Z)e PHA for Eq. (1.1),
Aﬁz(l/Z)e‘BH/zAAe‘ﬁfL”2 for  Eq. (1.2), or AP
=(1/ZB)f gd)\e‘(ﬁ‘)‘)ﬂﬁe‘m for the Kubo-transformed case
in Eq. (1.3). One of the practical advantages of the
time correlation function approach is that the observable of

interest can often be obtained from relatively short time
information.

© 2007 American Institute of Physics
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For complex (large) systems, there are several ways to
approximate the quantum dynamical correlation function
such that the result both approaches its classical limit at high
temperature and achieves the exact quantum result as t— 0.
One such approach is the centroid molecular dynamics
(CMD) method of Voth and co-workers,*” and another is the
ring polymer molecular dynamics (RPMD) method recently
proposed by Craig and Manolopoulos.6 In these approaches
the real time dynamics is related to a modified classical dy-
namics of the path integral beads of the quantum Boltzmann
operator or the centroid of them. For both of these models,
the quantum mechanical equilibrium distribution is con-

served; i.e., for the case A= 1, the correlation function is time
independent. Also, both of these models give the exact result

for harmonic systems if at least one of the operators A and B
is a linear function of position or momentum operators; how-
ever, they do not give the correct result if both operators are
nonlinear operators, even in a harmonic potential.7

Another class of approaches is based on various initial
value representations (IVRs) of semiclassical (SC) theory.>’

The SC-IVR provides a way for generating the quantum time

evolution operator (propagator) e”" by computing an en-

semble of classical trajectories, as much is done in standard
classical molecular dynamics (MD) simulations. The sim-
plest, and thus most easily applicable of these approaches
include the so-called linearized SC-IVR (LSC-IVR) by the
Miller and co-workers'®™'? and others,13 14 and the forward-
backward semiclassical dynamics (FBSD) approach by the
Makri and co-workers.">™"” These methods treat the operator
AP exactly and approximate the Heisenberg time evolution of
operator B(t)=eH"" B~ by assuming that the trajectories
used to construct the forward and backward propagators,
e~ it and ¢ respectively, are infinitesimally close to one
another. In the limit of a harmonic potential, it is straightfor-
ward to show that the LSC-IVR gives the exact quantum
correlation functions of even nonlinear functions of the po-
sition or momentum operator. The accuracy of the correla-
tion function can be systematically improved by the forward-
backward IVR and a more recent version—the exact
forward-backward IVR developed by Miller and co-worker'®
or the initial value series representation proposed by Martin-
Fierro and Pollak."” These more advanced semiclassical
methods are able to describe true quantum coherence effects
quite well, but they are more difficult to apply because the
integrand of the necessary phase space average has a phase
cancellation problem that makes Monte Carlo evaluation
more difficult. The LSC-IVR and the FBSD methods have
the drawback that the distribution generated for the operator

AB is not invariant with time for the case A=1 (i.e., AP

=(1/Z)e P!, the Boltzmann operator itself), though Liu et al.
have demonstrated that this is in fact not much of a problem
in practical calculations of autocorrelation functions.'’

The purpose of the paper is to present a novel method-
ology for calculating real time correlation functions that is
more accurate than the LSC-IVR and the FBSD approaches,
but still retains their simplicity, i.e., in having no phase can-
cellation problems in the relevant phase space averages. Sec-
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tion II first shows that it is possible to write the exact real
time correlation function in a form identical to the original
LSC-IVR expression. Section III then develops several prac-
tical approximations to these exact expressions, e.g., use of
the thermal Gaussian approximation20 for the Boltzmann op-
erator and also a particular type of “equilibrium distribution
approximation” (EDA). Some numerical implementations of
the methodology for the symmetrized force and the standard
momentum autocorrelation functions are presented in Sec.
IV, including a strongly anharmonic potential and a more
challenging quartic model system. Finally, some concluding
remarks appear in Sec. V.

Il. EXACT DYNAMICS OF THE CORRELATION
FUNCTION

The linearized approximation to the SC-IVR expression
for a time correlation function, the LSC—IVR,HL12 leads to
the following “classical Wigner” model for the correlation
function:

Cup(t) = (27h)™! fdxodpoAﬁ(xo’Po)Bw(anz), (2.1

where Aﬁ and B,, are the Wigner functions®' corresponding
to these operators,

0,,(x,p) = J dAx(x — Ax/2|Olx + Ax/2)e' P2 % (2.2)

for any operator O. Here (x0,po) 1s the set of initial condi-
tions (i.e., coordinates and momenta) for a classical trajec-
tory, (x,(xg,po),p(x0.po)) being the phase point at time 7
along that trajectory.

Here we would like to show first that the exact expres-
sion for a real time correlation can be cast in a form identical
to the LSC-IVR in Eq. (2.1), i.e., involving only a single
phase space average over the initial conditions for trajecto-
ries. This will then provide a solid basis for introducing prac-
tical approximations that will be an improvement of the
original LSC-IVR method but still maintain its simple struc-
ture.

We thus define the operator AB(I)=e‘i’;’/hAﬁe”;’/ﬁ for sys-
A : APB(1)
=e Milhp Ao for any initial density p, of the system, and
make use of the well-known identity for the trace of a prod-

tems at equilibrium, or more generally

uct of any two operators P and Q,

Tr(PQ) = 2mh)™! f dxdpP,(x,p)0,,(x,p), (2.3)

to express the exact real time correlation functions of Egs.
(1.1)—=(1.3) as follows:

Cup(t) = Tr(AB(t)é) =(2ah)™! J dxdpAg(x,p;t)Bw(x,p).

(2.4)

The time evolution of the operator AA(f) is governed by the
Heisenberg equation of motion,
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9 g _Lripen A
(%A (= h[A (1,H], (2.5)

the Wigner transform of which can be shown to be

J GAP [~
—AP(x,p;1) =~ Py f J(x,p — OAP(x, £:1)dE,
ot m ox .
(2.6)
where
J()GP) = _ﬂ'ﬁzf [V(q + y/2) _ V(q _ y/z)]e—ipy/ﬁdy.

(2.7)

For a potential for which the derivatives exist, the right-hand
side of Eq. (2.6) can be expanded as

d AP oAP 12 *Aﬁ
Al == S V) - s
ot ox dp

(2.8)

Furthermore, if (x,p)=(x,,p,) follows some trajectory, i.e., in
the Lagrangian picture,

d AP 9AP g
—AP(x.pt) = —2% + —2p. + —AP(x,.p.:1), 2.9
dt w( Pt ) o, t &pzpt o w( Pt ) (2.9)

and if the dynamics of the trajectory is chosen to satisfy

d
_Ag(-xnpt;t) = 0’

. (2.10)

i.e., the initial value of the distribution function remains in-
variant along the trajectory, then Egs. (2.8) and (2.9) imply
that the equations of motion of these trajectories are as fol-
lows:

. _ Dy
X = .
m

Mﬁ Ay

=—V'(x,) * W
P,

Ve pis1). 2.11)

This new dynamics is similar to classical dynamics except
that the classical force is replaced by an effective force —Vj.
More discussions about the new dynamics as an analog to
classical dynamics are presented in the Appendix .

The continuity equation

AB(xo,po)dxodpo = AP (x,,p,)dx.dp, (2.12)

still applies for this new dynamics, which means that the
phase space average in Eq. (2.4) can be taken over (xg,po),
so that Eq. (2.4) for the exact real time correlation function
has precisely the same form as Eq. (2.1) for the LSC-IVR
correlation function, except that now (x,(xg,p0),P:{(x0,Po)) is
the phase point at time ¢ along the trajectory which evolves
according to Eq. (2.11).
Interestingly, Eq. (2.8) can be rewritten as

J. Chem. Phys. 126, 234110 (2007)
d d d h? 1

- —Aﬁ(x,p;t) = —(Aﬁg) +— Ag(— V'(x)+ —VIx)—
ot o\ m/)  ap 24 AP

o)
X ) .
dp

By making analogous to the classical continuity equation in
the form

(2.13)

ap

=V.j, 2.14
P J (2.14)

where j=pv and v=(x,p), one can generate another version
of the dynamics, i.e.,

(2.15)
1 &ZA

W t

==V'(x,) + — V(X pist) .
Although the equations of motion governed by Eq. (2.15) do
not satisfy Egs. (2.10) and (A1), this kind of dynamics has its
own merit as we shall see below. Since the continuity equa-
tion [Eq. (2.12)] always holds, the exact real time correlation
function also has the same form as Eq. (2.1), the original
LSC-IVR method, with the trajectory now evolving accord-
ing to Eq. (2.15).

The exact quantum correlation function thus has the
same form as the LSC-IVR approximation in Eq. (2.1), both
being given by a single phase space over the initial condi-
tions for trajectories. The only difference is the evolution of
the trajectories: in the LSC-IVR they are governed by clas-
sical mechanics, while that in the exact case they are gov-
erned by the dynamics specified by Eq. (2.11) or (2.15). As is
clear from Eq. (2.11) or (2.15), the original LSC-IVR method
can be viewed as the limit of the exact correlation function as
fi—0, or the limit of a harmonic potential. In other words,
the exact dynamics of Eq. (2.11) or (2.15) enables us to
improve the real time dynamics in the LSC-IVR method.

When A=1 or AB(f)=e" ’H”ﬁ[) e’H’/hzﬁ(t), Egs. (2.6) and
(2.8) reduce to the conventional equations of motion for the
Wigner distribution function of the density operator,zl’22 and
trajectories governed by Eq. (2.11) become “Wigner
trajectories”23 in the literature, and those governed by Eq.
(2.15) become what we term here Donoso-Martens (DM)
trajectories.24 Since in practice the equations of motion de-
scribed by Eq. (2.11) or (2.15) are usually truncated at order
of %%, DM trajectories obey Ehrenfest’s theorem (p)
=Tr(pp(r))=—(V'(X)), so that the average energy (E)
=Tr(I:Iﬁ(t)) is invariant with time,*
do not have this desirable property.

but Wigner trajectories

lll. EQUILIBRIUM DISTRIBUTION APPROXIMATIONS

Though we have expressed the exact quantum time cor-
relation function in the same form as the LSC-IVR approxi-
mation, Eq. (2.1), the dynamics (i.e., the trajectories) which
go into it are now determined by Eq. (2.11) or (2.15), rather
than by the classical equations of motion. To evaluate the
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effective force —V that determines these trajectories, how-
ever, requires that the function Aﬁ(x,, p;;t) be known. Fur-
thermore, Eq. (2.11) or (2.15) requires many (in fact, gener-
ally an infinite number) terms containing derivatives of the
potential and those of Aﬁ(xt, Psst) (though the truncation of
the effective force —V’ g at order A% may sometimes be a
good approximation). The direct calculation of A®(x,,p,;t)
via Eq. (2.8) requires the propagation of an ensemble of tra-
jectories of the system which are entangled through the ef-
fective force —V., making the approach unfeasible for an-
harmonic systems with many degrees of freedom. A better
strategy, an analog of the approach proposed by Liu and
Makri® in Bohmian dynamics, is to make the trajectories
independent of one another by using their stability properties
to update Aﬁ(x,, p,;1) and its derivatives along the trajectory,
thus making it possible for Monte Carlo simulations of
higher dimensional systems. Such an approach, however, is
still probably not feasible for condensed phase systems.

For systems at equilibrium, when A=1 the operator
AP(1)=p(t)=(1/Z)ePH=p(0) is time independent, which
means that the Wigner transform of the density operator and
its derivatives are time invariant, i.e.,

pu(x,p30) = px,p3;0) = p(x,p) (3.1)
and
J J d
- 9 ;t = w 9 ;O = 0 b 9’
&xpw(x pit) P (x,p;0) axpw(x p)
(3.2)

d d P
—py(x.p31) = —p,(x,p;0) = —p’(x,p),
dp dp dp

and so on. Motivated by this observation, we introduce the

EDA as follows. For any operator A, we approximate the
ratios of the quantities in Eq. (2.11) by what they would be

with A=1, i.e.,

PAP FAP [ AP
3 / A op, ~ lim —* | —*

p, i1 9p; Ip;

_Ppulep) [ dpaxep,)
ap; ap

(3.3)

and so on in the equations of motion in Eq. (2.15), and

1 &ZAE 1 &zAﬁ 1 fp&(xnpz)
55 ~ lim — =
Ay dp;

i1 AL ol puxep)  dp; 0
and so on in the equations of motion in Eq. (2.15). This leads
to great simplification in the practical aspects of integrating
the generalized equations of motion, as will be seen below,
and will also be seen to be correct in various limits.

If the effective force —V. in Eq. (2.11) is truncated at
the order of #2, then the equations of motion become

J. Chem. Phys. 126, 234110 (2007)

. _ Pt
X = .
m

(3.5)
ﬁZ
pi=- éff(xtvpt;t) ==V'(x)+ iV(S)()C,)

" Fdxnp) | Ipxsp,)
p; p,

>

which we term “second order Wigner dynamics” (second or-
der WD). Similarly the truncation of the effective force -V
in Eq. (2.15) at the order of #2 leads to

(3.6)
ﬁz
Pi=- Ve,:ff(xzapt;t) ==V'(x,) + iv(3)(xt)

1 & P%(xrvpz)
po(x,p) P}

)

which is termed “second order Donoso-Martens dynamics”
(second order DMD). Both the second order WD and the
second order DMD can be viewed as a lowest order pertur-
bation correction to classical dynamics by adding quantum
effects to order A2.

Quite remarkably, however, the EDA enables us to in-
clude all higher orders of #? into the effective force —V/.
Notice that the left-hand side of Eq. (2.8) or (2.13) goes
to zero in the limit A— 1, so that the equations of motion in
Eq. (2.11) with the EDA become

(3.7)

>

. " . P: o'?p?v.(x,,p,) (9P?V(xnpt)
Pir== Veff(xnpt’t) =—-
m  ox, ap,

which we term “full Wigner dynamics” (full WD), and those
in Eq. (2.13) with the EDA lead to

_n
= )
m
(3.8)
. 1 1 9px,r)
Pir=- Ve,ff(xt’pﬁt) =—7) f_t S dp,,
Pw(xzapz) m ox;

which we refer to as “full Donoso-Martens dynamics” (full
DMD). Here the integral is an indefinite integral, which can
be integrated analytically with the approximations to
p2(x,,p,) that we describe in the next section.

In the high-temperature limit, 8— 0, the Wigner trans-
form of the equilibrium density operator reduces to the clas-
sical Boltzmann distribution, i.e.,

2
P (x.p) — (1/Z)exp{— B(f—m + V(x))} (3.9)

and in this limit it is straightforward to verify that all the
proposed equations of motion in Egs. (3.5), (3.6), (3.7), or
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(3.8) reduce to classical mechanics. Also, in the limit of a
harmonic potential, when V*®(x) and higher derivatives van-
ish, these proposed equations of motions are exact. Hence
the real time correlation function in Eq. (2.1), with the gen-
eralized equations of motion in Egs. (3.5), (3.6), (3.7), or
(3.8), is exact in three important limits (as is the original
LSC-IVR method): (i) the classical (or high-temperature)
limit, (ii) the limit of a harmonic potential, and (iii) the short
time limit
t— 0. What is more important, however, is that they are ex-
pected to give a better approximation to the correlation for
longer time than the original LSC-IVR method. These four
proposed methods can thus be thought of as improved LSC-
IVR methods, since they have the same form as Eq. (2.1),
differing only in the equations of motion which generate the
trajectories. The full WD and the full DMD methods, in par-
ticular, conserve the distribution generated for the operator
AP for the case A=1, which the original LSC-IVR method
fails to do.

IV. THERMAL GAUSSIAN APPROXIMATION

Calculation of the Wigner function for operator B in Eq.

(2.1) is usually straightforward; in fact, B is often a function
only of coordinates or only of momenta, in which case its
Wigner function is simply the classical function itself. Cal-
culating the Wigner function A”(x,,po) or pl(x,,p,), how-
ever, involves the Boltzmann operator with the total Hamil-
tonian of the complete system, so that carrying out the
multidimensional Fourier transform to obtain it is far from
trivial. Furthermore, it is necessary to do this in order to
obtain the distribution of initial conditions of momenta p, for
the real time trajectories. A rigorous way to treat the Boltz-
mann operator is via a Feynman path integral expansion, but
it is then in general not possible to evaluate the multidimen-
sional Fourier transform explicitly to obtain the Wigner func-
tion AP(xy,po) or p’(xg,po), as discussed by Liu and
Miller.'? The inability to calculate the Wigner function of AP
exactly is in fact the reason for the various harmonic and
local harmonic approximations to the Boltzmann
operator.lo’u’14 These approximations have been successfully
applied to some complex systems.lz’26

With such approximations for the Boltzmann operator,
all four approximate methods proposed in Sec. III for the real
time dynamics can be readily applied. Here we use the ther-
mal Gaussian approximation (TGA) (Ref. 20) that we have
implemented into the LSC-IVR calculation recently.12 In the
TGA, the Boltzmann matrix element is approximated by a
Gaussian form,

_ [:] 1 3N/2 1
Xexp(— $(x— g(D)G (D (x - g(1) + A7),
(4.1)

where G(7) is an imaginary time-dependent real symmetric
and positive-definite matrix, ¢(7) the center of the Gaussian,
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and y(7) a real scalar function. The parameters are governed
by the following equations of motion:

265 =~ GV Vg )G() + W™,

<L g(n) == GV, 4.2)
-

) == TV Vg()G(9) ~ (Vig(m).

with the notation

1 3N/2 1
wor=(2)" e

X J‘” dx exp(= (x = g(M) G (D(x

—q(7))h(x).

The initial conditions for the imaginary time propagation are
G(r=0)=h*m™, yr=0)=-=7V(q).

(4.4)

(4.3)

q(t=10)=q,,

The Wigner function A%(x,,po) with the TGA can then be
expressed as follows:

1 1 2¢Y(B/2
M= f exp2ABL2)

d
P 4myV2 |det G(Br2)[

1
X
V2| det G(B/2)|'?

Xexp(- (xo - q(B/2))'G™"(B2)
|det G(B/2)|?

X(xo—q(BI2)))

(ﬂ_h2)3N/2
Xexp(— phG(BI2)py/h>) X fag (X0:p0,q(BI2)),
(4.5)
where
Fag M x0,porq(B12)) = Algo) (4.6)

for local operators with Aﬁ=e"3’;/2A()€)e‘B’;/ 2 [notice
p(v)v(x,p) =A£(x,p) for A= 1], and

Fas 0.p0:a(B12)) = po — iGN (B12) (xo — q(B2)) (4.7)

for the momentum operator A= p with Aﬁ=e‘ﬁHﬁ, etc.

The TGA enables one to calculate the effective force
-V explicitly in the equations of motion for the four meth-
ods described in Sec. III, and hence real time correlation
functions based on Eq. (2.1).

V. EXAMPLE CALCULATIONS

In order to test how well the four types of generalized
dynamics described in Sec. III perform within the framework
of Eq. (2.1), we have carried out calculations for two one-
dimensional models, at a high temperature =1 and a low
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temperature 3=8, comparing the results to the classical, the
original LSC-IVR, and the exact quantum results. The sym-
metrized force autocorrelation (a nonlinear local operator)
and the standard momentum autocorrelation function are cal-
culated at both temperatures to investigate how well the

EDA performs for different operators A and for the four dif-
ferent versions of the dynamics.

A. Anharmonic oscillator

The first model we consider is an asymmetric anhar-
monic oscillator

V(x) = ma’x® = 0.10x% + 0.10x*, (5.1)
with m=1, w= \E, and #i=1. This quite anharmonic potential
has been used as a test and discussed previously with the
LSC-IVR and the FBSD methods.'>'*?’ Results for the force
autocorrelation functions are shown at two different tempera-
tures in Figs. 1 and 3, while those of the momentum auto-
correlation functions are shown in Figs. 2 and 4. At both
temperatures, we use 21 imaginary trajectories (to generate
the Boltzmann operator via the TGA) with the imaginary
time step of 0.1, and a large number of real time trajectories
generated from each imaginary trajectories with a real time
step of 0.02. The velocity Verlet integrator was used for both
real and imaginary time dynamics.

Consider first the higher temperature case (8=1), Figs. 1
and 2, for the force and momentum autocorrelation func-
tions, respectively. Even at this temperature, however, the
classical results still deviate somewhat from the quantum
results with regard to both the initial value at t=0 and the
dephasing for longer times. The LSC-IVR method and vari-
ous improved versions proposed in Sec. III are able to de-
scribe the correct result for approximately the first two vibra-
tional periods (#<<10). The original LSC-IVR method
dephases more rapidly than the quantum result due to coher-
ence effects. The full WD and the full DMD methods
dephase the least, but there is a noticeable frequency shift at
long times (after three vibrational periods). The second WD
method is even worse regarding the frequency shift but the
second DMD method seems to correct this error. In the very
high-temperature regime (8=0.1), the correlation function
calculated by all methods and the exact quantum correlation
function approach the classical result (figures not shown
here), as discussed in Sec. IV.

Results for the much lower temperature (8=8) are
shown in Figs. 3 and 4 and here the classical results depart
from quantum results with regard to both amplitude of the
oscillation (drastically) and frequency (noticeably). The
original LSC-IVR method provides a good description for
the first vibrational period and is semiquantitative over sev-
eral more periods. The second DMD method improves the
results systematically in both amplitude of the oscillation and
frequency for longer times over the original LSC-IVR re-
sults, while second WD method does similarly for the am-
plitude of the oscillation but with a noticeable frequency
shift. The full WD and full DMD methods match the exact
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FIG. 1. (Color online). The symmetrized force autocorrelation function for
the one-dimensional anharmonic oscillator given in Eq. (5.1) for B=1.
Black solid line: Exact quantum result. Cyan dotted line: Classical result. In
the following results, the Boltzmann operator is treated by the TGA. Purple
dot-dashed line: LSC-IVR result. Green solid circle: Full WD result. Red
triangle: Full DMD result. Brown dashed line: second order WD result. Blue
solid line: second order DMD result.

quantum result almost perfectly except for a slight frequency
shift after quite long time (z>25).

It can be seen that the EDA behaves similarly for both
the symmetrized momentum and the force autocorrelation
functions despite the fact that the operators are linear in the
former case and nonlinear in the latter, and the difference
between the standard and the symmetrized correlation func-
tions.

B. Quartic potential

The next model potential studied is the following pure
quartic potential:

V(x) =0.25x*, (5.2)

with m=1 and A=1. This is a more challenging case since no
harmonic term is involved and hence represents a severe test
whether the various approximate methods proposed in Sec.
IIT can describe the purely quantum coherent collisions of a
broad thermal wave packet against the quartic potential wall.
This model has been studied by the CMD and the RPMD
dynamics only for the position autocorrelation function.>®
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FIG. 2. (Color online). The real part of the standard momentum autocorre-
lation function for the one-dimensional anharmonic oscillator given in
Eq. (5.1) for B=1. Black solid line: Exact quantum result. Cyan dotted line:
Classical result. In the following results, the Boltzmann operator is treated
by the TGA. Purple dot-dashed line: LSC-IVR result. Green solid circle:
Full WD result. Red triangle: Full DMD result. Brown dashed line: second
order WD result. Blue solid line: second order DMD result.

The results for the symmetrized force (a very nonlinear
operator) autocorrelation functions are shown at two differ-
ent temperatures in Figs. 5 and 7, while those of the momen-
tum autocorrelation functions are shown in Figs. 6 and 8.
The simulation details for this model are the same as those
for the previous potential.

Figures 5 and 6 show that at the temperature S=1 the
classical result fails to describe the long-time oscillations in
the exact quantum results; the LSC-IVR method does little to
correct this, and neither do the four new methods that we test
in this paper. We expect that the truncated methods (second
order WD and second order DMD methods) are not able to
capture quantum coherences because quantum coherences
are reflected in the Wigner function as “sub-Planckian”
oscillations®® and any lower order truncations of the propa-
gation of the Wigner function fail to describe such effects.”
The failures of the full WD and the full DMD methods indi-
cate that the EDA that we introduced in Sec. III, i.e., Eq.
(3.3), is not capable of describing quantum coherence of the
real time correlation function. However, in many cases for
complex systems in the condensed matter phase, such long-
time coherence effects shown in one-dimensional models are
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FIG. 3. (Color online). As in Fig. 1, but for a much lower temperature
B=8. Panels (b) and (c) show a blowup of the curves shown in (a).

expected to be quenched by coupling among the various de-
grees of freedom,” and the most important is the short time
dephasing behavior which can be accurately described by the
various methods in this paper.

At the much lower temperature (8=8) in Figs. 7 and 8,
the classical results depart drastically from quantum results
with regard to both the amplitude of the oscillation and the
frequency even from the very beginning. The original LSC-
IVR method provides reasonably good results for the first
vibrational period, but dephases too quickly afterwards and
completely vanishes after almost two periods. The second
order DMD method is a significant improvement over the
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FIG. 4. (Color online). As in Fig. 2, but for a much lower temperature

B=8.

original LSC-IVR method in amplitude of the oscillation and
reproduces the frequency best, although there is still dephas-
ing. The second order WD method improves the amplitude
of the oscillation but generates a pronounced frequency shift.
The full WD and full DMD methods behave similarly, giving
the amplitude of oscillation quite well (the small remaining
error being due to error generated by the TGA treatment) and
with slightly more frequency shift than the second order
DMD method.

The better behavior at the low temperature is under-
standable: quantum statistical effects in the correlation func-
tions show their importance for longer time (as the thermal
time 783 is longer) and the EDA also reflects that in the
equations of motion of the various methods listed in Sec. III.
It is clearly demonstrated that in both the anharmonic model
and the quartic potential, the full WD, the full DMD, and the
second order DMD methods improve the original LSC-IVR
method to (much) longer times at low temperatures.

The second order DMD method works systematically
better in all cases than the second order WD method. This is
because of the merit of the second order DMD method that is
mentioned before, i.e., that the ensemble of all DM trajecto-
ries obey Ehrenfest’s theorem, which is not true for the sec-
ond order WD method.

Again, we notice that the EDA behaves similarly for
both the symmetrized force and momentum autocorrelation
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FIG. 5. (Color online). The symmetrized force autocorrelation function for
the one-dimensional quartic potential given in Eq. (5.2) for B=1. Black
solid line: Exact quantum result. Cyan dotted line: Classical result. In the
following results, the Boltzmann operator is treated by the TGA. Purple
dot-dashed line: LSC-IVR result. Green solid circle: Full WD result. Red
triangle: Full DMD result. Brown dashed line: second order WD result. Blue
solid line: second order DMD result.

functions; i.e., how the EDA performs seems to be indepen-

dent of the operator A and the version of the real time cor-
relation function. Notice that the force operator is very non-
linear.

VI. CONCLUDING REMARKS

In this paper we have first shown that the exact time
correlation function [Egs. (1.1)—(1.3)] can be written in the
form of the LSC-IVR/classical Wigner approximation given
by Eq. (2.1), i.e., as a phase space average over initial con-
ditions for trajectories, with the Wigner function for Boltz-

mannized operator AP evaluated at the initial phase point and

that for operator B evaluated at the time evolved phase point.
The difference is that for the LSC-IVR the dynamics (i.e.,
the time evolution of the trajectories) is given by the classi-
cal equations of motion, while the trajectories in the exact
theory are determined by generalized equations of motion.
This exact formulation serves as a basis for making approxi-
mations to obtain practical methods for application to real
molecular systems.
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FIG. 6. (Color online). The real part of the standard momentum autocorre-
lation function for the one-dimensional quartic potential given in Eq. (5.2)
for B=1. Black solid line: Exact quantum result. Cyan dotted line: Classical
result. In the following results, the Boltzmann operator is treated by the
TGA. Purple dot-dashed line: LSC-IVR result. Green solid circle: Full WD
result. Red triangle: Full DMD result. Brown dashed line: second order WD
result. Blue solid line: second order DMD result.

For systems at equilibrium, the EDA provides a feasible
and reasonably good approximation. In these examples it is
seen to perform similarly for different versions of the auto-

correlation function and for different operators A. Four ap-
proximate methods based on the EDA were proposed and
tested—the full WD, the full DMD, the second order WD,
and the second order DMD methods—which can all be
viewed as improvements to the original LSC-IVR approxi-
mation. The overall results can be summarized as follows.
All four methods account for appreciable quantum effects in
the correlation functions for short times, for all temperatures,
as does the original LSC-IVR. The full WD, the full DMD,
and the second order DMD methods are good for (much)
longer time in low temperature regime than the original
LSC-IVR. The second order WD method gives a better de-
scription of dephasing effects than the original LSC-IVR
method, but it also causes a pronounced frequency shift in
the correlation function and is not as good as the former
three proposed methods; we attribute this behavior to the fact
that it does not obey Ehrenfest’s theorem.

Combined with the TGA or other harmonic or local har-
monic approximations for the Boltzmann operator, all four

J. Chem. Phys. 126, 234110 (2007)
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FIG. 7. (Color online). As in Fig. 5, but for a much lower temperature
B=8. Panels (b) and (c) show a blowup of the curves shown in (a).

methods proposed here can be applied to condensed phase
systems in realistic situations, since they do not involve os-
cillatory factors in the necessary phase space averages. Work
is in progress to see how much these new methods improve
the LSC-IVR for realistic molecular systems. It will also be
interesting in future work to see if one can construct a better
approximation than the EDA, e.g., by taking account of op-
erator A (rather than taking the limit A—1)in Eq. (3.3) or
(3.4).

Finally, we note that though the Wigner transformation
was used as the starting point in this paper [Eq. (2.4)], the
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FIG. 8. (Color online). As in Fig. 6, but for a much lower temperature

B=8.

methodology can in principle be generalized to any quantum
phase space transformation, such as the Husimi distribution
’function,31 the Glauber-Sudarshan P and Q functions,32 etc.
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APPENDIX: NEW DYNAMICS AS AN ANALOG TO
CLASSICAL DYNAMICS

In light of Egs. (2.10) and (2.12), one sees that the vol-
ume element in phase space is invariant; i.e., the volume of
infinitesimal phase space obeys

dxydp, = dx,dp,. (A1)

Equations (2.10) and (A1) reveal that the dynamics governed
by Eq. (2.11) is an analog to classical dynamics. An interest-
ing and perhaps useful derivation based on this is that the
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ensemble average can be replaced by the time average as
long as the system is assumed to be ergodic.

To show this, we first define the ensemble average of
some physical property B(x,p) on the probability surface
8(P(x,p)=Py) as

1
(B)ens = STN) f dxdpB(x,p) 8(P(x,p) = P), (A2)
where 2(P,) is the area of the surface, i.e,
2(Py) = f dxdp 8(P(x,p) = Py). (A3)

Equation (A2) is in fact a generalized definition from
classical dynamics: in classical mechanics, the probability
distribution is actually a function of energy P(x,p)
=P(E=H(x,p)), the probability surface &(P(x,p)="P,) coin-
cide with the energy surface 8(H(x,p)=E,), and the en-
semble average on the probability surface &(P(x,p)=P,) is
just the microcanonical ensemble. Any trajectory has to be
on some probability surface as long as the dynamics satisfies
Eq. (2.10), i.e., here,

d

Ep(x,,p,;t) =0. (A4)
We then define the time average of the physical property
B(x,p) along some trajectory as

to+T
(B)y=lim —J B(x,p,)dt. (A5)

T—o0 0

If the ergodicity holds in the system, the ensemble average
on the probability surface equals to the time average along
some trajectory on that probability surface, i.e.,

<B>ens = <B>Ta

which is a familiar argument for the molecular dynamics
(MD) community.

Thus, the analogs of the new dynamics presented in Eq.
(2.11) to classical dynamics listed in Eq. (2.10) and dis-
cussed in this appendix opens the gate to introduce some
techniques similar to those of the conventional MD simula-
tion into the calculation of the exact formulation of the real
time correlation function Eq. (2.1) associated with Eq. (2.11).
For example, for the canonical ensemble, one might replace
the phase space integral in Eq. (2.1) by a time average, if the
dynamics in Eq. (2.11) is modified in a similar way in which
classical dynamics is modified in the Anderson thermostat™
or the Nosé-Hoover thermostat™ to describe the classical
Boltzmann distribution.
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